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\ﬁ ABSTRACT

In this paper we identify a class of estimation problems in which
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secquential estimation procedures do not yield a better rate of convergence

than procedures in which all the observations are preassigned in advance.
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SIGNIFICANCE AND EXPLANATION

The complexitf or work required for a numerical procedure is some-
times measured in terms of the number of function evaluations required
to yield an error of a given size. There are several effective algorithms
which are based on a sequential method of selecting function evaluations.
For instance,binary search for a root of a function or Fibonacci search
for the maximum of a unimodal function are examples of sequential
procedures.

In a sequential procedure the prior function values are used to pick
an optimum location to evaluate the function next. An alternative to a
sequential selection is to choose all the function values at once, how-
ever many have been decided to be used. Such an approach is simpler but
typically yields a slower rate of convergence. For instance, the error
for binarvy search is geometrically decreasing in the number of function
values while a preassigned strategy vields only an error decreasing at

a rate inversely proportional to the number of function values.

It is the purpose of this paper to identify a class of estimation
problems in which sequentiality will not yield a faster rate of conver-
gence than a deterministic choice. This class includes problems of
numerical quadrature and differentiation. Thus we demonstrate that the
complicated procedure of sequential estimation can be replaced by a much
simpler strategy of a deterministic choice for some important problems

of numerical calculation.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.




OPTIMAL SEQUENTIAL AND NON-SEQUENTIAL

PROCEDURES FOR EVALUATING A FUNCTIONAL

L ]
Shmuel Gal and Charles A. Micchelli

1. Framework and Defintions.

In this paper we compare certain optimal procedures for sampling a function f belong-
ing to some prescribed class for the purpose of estimating a functional Uf. Our main ob-
jective is to identify a large collection of examples in which sequential procedures are not
advantageous. Several unsettled questions whose solution would illuminate the problem
studied here are outlined at the end of section 3.

We begin with a family of real valued functions defined on [0,1), F = {f}, and a func-
tional Uf defined for all f ¢ F. Assume that for any f ¢ F we can make n observations
of f at points XpoeeerX, and obtain the information f(xl) = yl,...,f(xn) - The set

of uncertainty in Uf is

O(x;£) = {Up:v e F, olx,) = f(xi)}. X = (XpreeerX ).

(For simplicity we shall consider the case of x, € [0,1], but all the results hold for func-

i
tions defined on any bounded subset of Rm.) As a measure of the size of this set we take

(1) g(x;f) = q(xl,...,xn;f)

= sup Uy =~ inf Uy
¥ € W(ix;f) veW(x;£)

where W(x;f) = {y:v e F, w(xi) = f(xi) }, i.e., g is the length of the smallest interval con-~

taining o(x;f). The function g(x;f) is defined for x ¢ c,=f{x= (Xjoeeerx ) 2 0 < %, < 1}

and f € F. We will compare three policies for choosing XyreeooX .

To this end, let E be some prescribed subset of (0,11 from which we will sample a
function f € F. 1In practice, we are typically constrained to sample from some fixed finite
subset of [0,1]. We will frequently assume E has this property.

Now, let !n =EXEX.,.xE (n times) and consider the following three procedures.
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a. Deterministic.

The accuracy guaranteed is defined as

dn = inf sup g(x;f) .
ern feF

b. Random.
Random observations are preassigned by a probability distribution u on E.

The accuracy guaranteed here is

(3) r = inf sup f g(x; £)du(x) .
n
u feF E
n
(We will only allow probability measures du on En for which g(x;f) is
p-integrable.)
c. Sequential.
A sequential search procedure is a set of n functions hl' h2""'hn where

h1 =x, isa constant, x, = hz(xl.f(xl)),...,xi+1 = hi+1(x1,f(xl)....,xi,f(xi)),
...,€tc. This procedure produces an h(x;f) € En' h = (hl,...,hn). The totality

of sequential procedures will be denoted by Sn'

The accuracy guaranteed by a sequential procedure is given by

(4) B inf sup g(h(x;f):;f) .
heSn feF

Remark 1. Obviously dn and g< a for any subset E of [0,1]. The following

example is a simple instance in which s, << r..

Let E = [0,1], F = {£:£(0) = =1, £(1) = +1, £(a) >0+ £(b) >0 for a<b <1} and

Uf = inf z such that f(z) > 0 (i.e. Uf is the "root" of f). If we let X, = 0, X4 = 1

then g(x;f) = xj - xj_1 where j is the smallest index such that Yy = f(xi) > 0. Hence
inf sup g(x;f) = inf lup(x1 - xi-l) = 1/n+l. To estimate LA define kz e F by

% £ % %
k'(t) =-1,0<t<z, and +1 for z <t < 1. Then

«Qw




A —

T v - ; ey o - ere—————

£ w inf sup f g(x; £)du(x)

u f En

1
>inf [ [ glxik)du(x)az
w0 E

n+l %y

= inf | j o (x, - x. .)dzdu(x)
W B i=1 x * it

i-1
n+l 2
eint { } (x; = x;_,)7du(x) > 1/n+l .
u E i=1

On the other hand, the bisection (secuential) procedure yields an accuracy of (1/2)n and in

fact it is easily seen that 8. = (1/2)“.

In contrast to this situation we will show below that there is a wide class of problems

for which r_ < s .
N=ran

2. Linear Functionals Defined On Convex Sets.

In this section we assume that

(5) F is a convex family
and
(6) U is a linear functional .

Lemma 1. Suppose (5) and (6) hold. Then g(x;f) is a concave function of f € F.

Proof. Let f,, f F. Then for any € > 0O there exist -f-i' gi € F with

2€

fi(x) = £i(x) = fi(xj), i=1,2,3j=1,...,n and

3 3

(7 9(x;£) < U(E;) - U(E) + e .

Thus by (7) and the linearity of U

g(x;0f, + (1-0)£,) > U(BE, + (1-0F,) - U(OL, + (1-0)£,)
= B[U(E)) - U(£))] + (1-0) (U(E) = U(L,))

leg(xzfl) + (l—e)q(x:fz) -€ .

Letting € + 0 proves the lemma.




Theorem 1. If (5) and (6) hold and E is a finite subset of [0,1] then

(8) r_ = sup minf g(x;f)du(x) . (see (3))
feF u Bn
This theorem is a consequence of the following version of Ky Fan's minimax theorem [2],
which we state below.
Theorem A. Let S, T be sets with S a compact Hausdorff smace. Let ¢ be a real-valued
function defined on S x T which is continuous and convex with respect to s, and concave in
t. Then there exists an s ¢ S such that

min sup ¢(s,t) = sup ¢(s,t) = sup min ¢(s,t) .
s€S teT teT teT seS

For the proof of Theorem 1 we define
¢u.) = [ glxifldu(x
E
n
where u ranges over all probability measures on E . Given the usual topology on {u}

(n-dimensional simplex), the theorem follows from Lemma 1 and the definition of rn.

This result leads us to
Corollary 1. 1If (5) and (6) are satisfied and E is a finite subset of (0,1] then

dn N 0 (Sequentijality does not help!).

Proof. Given € > 0 there is an f ¢ F with

J gtxBau >r - ¢

E
n

for all probability measure u. In particular, q(x;?) £ for all x € En. Thus, for
any sequential search procedure h = h(x;f) we have q(h(x;?);_f_) S rn - €. Consequently,

s, = inf sup g(h(x;f);f) > I, - €
hcsn feF

Remark 2. A randomized sequential procedure combines, in an obvious way, the features of a
random and a sequential search. Using the same argument, it follows directly that even ran-
domized sequential procedures do not produce better accuracy than the preassigned randomized
procedures considered in this paper.

-4
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We show below with an example that Theorem 1 is not valid in general for infinite subsets

E of (0,1]).
Example 1. Let E = [0,1], F = {f: there is a 2z, 0 <z <1 such that f is strictly in-

creasing in [0,z] and f(t) = £(z), t € [z,1] and |[f(t)| <1, t e (0,11} and

Uf = lim f£(t). Note that F is convex and U is linear,but E is not a finite set. Now,

trl
for n=2 we have inf g(xl,xzxf) = 0 and thus
X, X
172
sup inf [ g(x;f)au(x) = 0 .
£

However, for any u there exists a q, 0 < @ < 1 such that u(xl and x, are not in [q,1))

2
> 1/2. Hence for ¢ small and

-1 + te, 0<tsaq
*
f () =

-1 + qge, G s

*
it follows that if one of the x;'s is not in [e,1) then g(xy /%, ) > 2 - €. Thus

2
[ gtxi£)au > 1 - ¢/2 ana

inf sup [ g(x;f)du > 1 - ¢/2 .
R

The fact that the functions in F need not be continuous at one may seem artificial,
nevertheless, it is possible to construct other examples of this type in which all the func-

tions in F are continuous.

Remark 3. If we allow nature (our opponent) to choose an f from some fixed finite subset

F' of F Dby means of a probability distribution dv then the accuracy we can obtain with

our best choice of du is

min max [ ] g(x; f)du(x)av(f) .
u v E P
n
By the standard version of the minimax theorem this number equals

max min [ [ g(x;£)du(x)dv(£)
v u l:nF'

and optimal strategies du.(x), dv.(x) exist even if (5) or (6) is not satisfied. In this

L
case even though nature will choose the data according to the distribution dv we know by

-5~
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our previous example that a sequential procedure can guarantee a much smaller accuracy. Why
is this so? The explanation to this phenomenon which is contained in Corollary 1 is as
follows: When (5) and (6) are in force then nature has a universal worst function f

which can be used against any sequential procedure for selecting x = (xl,...,xn). Thus

we cannot hope to "learn" about f ¢ F by using sequentiality. On the other hand,

if nature has to choose among a set of functions (randomized) then we can really "learn"
something about the function which was chosen. This was the case in the method of bisection.
Remark 4. Let du. be the optimal probability distribution for choosing x = (xl,...xn) and
suppose there is an optimal strategy of nature f. among all f ¢ F.

Then

* » *
r, = inf g(x,f) = [ glx,f)du (x

xeE E
n n

* * *
and thus the support of u is a subset of all x € En which satisfy g(x;f ) = inf g(x,f ).
x

This condition may help to find the optimal search strategy, i.e., our plan against the data
corresponding to the worst function.

Below we offer some further examples which show that certain extensions of Theorem 1 are
not possible.
Example 2. Here we define a convex set F and a nonlinear convex functional U and demon-
strate that Theorem 1 is not valid for this case.

Let E = [0,1],

F = {£:f concave, |£'(x)] <1, x € 10,1]}
and

vuf = sup f(x) .
O<x<1

U is obviously a convex functional and F a convex set.
For 0 <z <1 define ¢ ¢F as ¢;(x) =x for 0<x<z and ¢;(x) =2z - x for
z < x < 1. Thus for any n observations XyoeoorX, (which we assume for convenience are

=1), if x, <z <x then

1 b
9(x;¢;) =2z - max(u;(xj). ¢;(xj+1)) = min(z - xj, xj+1 -z) .

ordered 0 = x_ < x

0 <eea% Xn<!

n+l j+1

Therefore A

-6=
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1
; fog(xl,...,xn;wz)dz

g
£
{ :
§ Xy ot e x, 1
: = [ (x,-2)dz + [ 4 (z-x,)dz + [ (x,-z)dz +...+ | (z-x )dz
E 0 x1 xl+x2 xn
; 2
2 2 2 2
: fl . (x2 xl) A (xn-xn_l) ) (l-xn)
2 4 g 4 2
S ]
— 4n
and it follows that r , d > 2 G
n n — 4n

On the other hand, since all f € F are unimodal we can achieve with a Fibonacci

search an accuracy of about an, a ® .62 (the Golden section) for the location of the maximum.

Moreover, since |f'| < 1 we may then locate the value of the maximum Uf, within a" as

well. Thus g (.62)n L dn' A completely analogous example can be constructed with a

concave functional.

1
Example 3. In this example E = [0,1], Uf = [f(x)dx and F = (£ :0<2z<1}, f, = character-
R oR o z
istic function of [z,1]. Here U is a linear functional and F is a nonconvex set.
; For 2z ¢ [xj, xj+11' we have g(x;f) = xj“1 - xj and so
. :
)i n+l
2 1
- = - D ——
footkpeeiixsEpaz = | o(x; - x, D92 ==
i 0 i=0

Thus .2 1/n+l. But, if we use the bisection sequential procedure then we may locate =z

with error (1/2)n and so the interval of uncertainty about Uf is sn = (1/2)" << tn- i

Examples 2 and 3 remain valid if we take E to be a finite (but large) set of points

(e.g., E = i T TR

3. Centered Sets.
We will say a set F is centered (about fc) if there exists an fc € F such that
whenever f ¢ F then Zt‘c - f€F.

Lemma 2. Suppose (5) and (6) hold and F is centered about f_. Then for all
Xx= (X, ,...,x) e E and f ¢ F
. g 20 g(x:€) < glxify .

e
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Proof. Since f ¢ F if and only if ch -fePF

w(2fc - £;x) = 2fc - W(E;x) . (see (1))

Hence we see that g(x;zfC - f) = g(x;f) for all f € F. Now, it is an easy matter, in view

of Lemma 1, to prove the lemma

gixif) = 3 (gxif) + g(x;2f_ = £))
o]
< g(x;fc) .

Theorem 2. If there exists an fc € F such that for all x € En and f ¢ F

(9) g(x,£f) < g(x,fc)

then for all n

(10) dn L W
and
(11) fc is the optimal strategy of nature independently of n .

Proof: Let v = inf g(x.fc). It is obvious that by using fc’ nature can keep the payoff
X€E
n

to be at least v against any randomized or sequential procedure. On the other hand for any
€ > 0 it is possible to find an xo which satisfies g(xci fc) <v+e€, sothat any f ¢ F

g(xe: f) < g(xe; fc) <wv +E.

Thus, the deterministic search procedure x keeps the payoff below v + €. It follows

that fc is optimal and X, is e-optimal.

Remark 5. Note that for Theorem 2 to hold, it is sufficient that condition (9) is satisfied
and no other assumptions (such as linearity of U, convexity of F or finiteness of E) are
necessary.

The proof of Theorem 2 actually presents a method for finding the optimal search proce-
dure. The rule in this case is simple, we just have to find a set of points XyreooX

which minimizes the interval of uncertainty for the case in which nature uses fc.
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We also note that a related result under a stronger hymothesis appears in Bakhvalov [1].
Needless to say there are many interesting examples to which Theorem 2 applies. Below
we mention one from the theory of optimal quadrature.

Example 4. Let F = {f:f is absolutely continuous and |[£(z) - f(y)| < M|z - y|, 0 Lg), i 3}

1
and Uf = [ f(t)dt. Then the assumptions of Theorem 2 hold (since 0 is the center of F)
0
* *
and so the observation points XyreeosX are deterministic and preassigned and have to satis-
fy
(X, ,eeax50) i ( 0)
glx. o aX 10) = min g(X, peeerX ; .
’ o 0<K <eoo<x <l L 2
-1 n—
It easily follows that e~
n-1
2 R 2 2
g(x;0) = 2M[x] + 3 ) (o= x) + HE=-x)" .
i=1
i-1
2

*
This function has a unique minimum for X, = i=1,...,n and we conclude that

rn-dn-sn=M/2n 3
1
In this example we may replace Uf by any positive linear functional Uf = J' f(t)dy(t)
0
and F by {f:f abs. cont. |f'(t)| < b(t), a.e.}. Again Eoow dn ™ 8 but in general the

*
optimal x, are not equally spaced and difficult to find explicitly. They correspond to the

minimum of
xl e - n-1 zi 5 b
g(x;0 = 2|f (blx,)-b(t))dv(t) + Y (b(t) -b(x,)) dY(t)
0 i=1\x
i
x1'.4»1 X o 1 ¥ i
& f (b(x; ) = bleNay(e)) + [ (b(t)-b(xn))dy(t)]
z X
i n
where

t
b(t) = [ b(t)at .
0

and zi satisfies




e - 1 - -
b(zi) - b(xi) =5 (b(xi+1) - b(xi)) .
Our last example has the property that (5) and (6) hold and L < dn.

In our next example we observe that the conclusion of Theorem 2 may remain valid in the
absence of a center for F. This example raises the issue of the extent to which the require-
ment in Theorem 2 that F have a center can be weakened.

1
Example 5. Let F = {f:f increasing, 0 < f(x) <1, for 0 < x < 1} and Uf = | f(x)ax.

0
Then (5) and (6) hold, however, F does not have a center. The following remarks are a for-
mal proof of the latter statement. Assume that a center fc exists. Since 0 € F then
282 i O 2f e F so that f < 1/2. But 1 ¢ F which implies f_ > 1/2. Thus £ =172

which is impossible because then f(x) = x € F implies 2£c(x) - f(x) = 1 - x is increasing.

*
Nevertheless we will show that f (x) = x is a universally worst function and dn =z

*
1 It is easily verified that for any x = (xl,...,xn) 0 <%y <eee<x < 1 and £ (x) = x

i 2 2 2 2
g(x;f ) = X + (xz—xl) +ooot (xn-xn_l) + (l-xn) S

*
that is, nature can guarantee a value of ;%I by choosing £ . On the other hand, if we use

* i
X, = ol then for any f € F

* 1 X 1 2 ke 1 n en=l
gix 1f} = n+l f(;:I) * el %(;:Ta N f%H‘lﬂ ot AL E(n+1) f(m-l)]

n+l
Thus the searcher can guarantee a value of ;%T by a deterministic strategy so that

*
dn = rn = s . In addition, we know f is a universally worst function for all n. This ex-

ample has been mentioned by Kiefer in [3].

gog Ll LU LI N

Our last example has the property that (5) and (6) hold and r < dn.

-10-
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Example 6. For any interval I S [0,1] we let fI be its characteristic function. Let

= [0,1] with I <...<Im and

I,,.--,I_ be a partition of [0,1], I, " =6, 3%k ? 1 1

3 3

define

7 i
F = { y.£f. :y. >0, v, = 1}
e R e oy~

(step functions). For U we choose an arbitrary linear functional given by

n
uf = X yjaj
i=1
and as usual E = [0,1]. We define a mapping i:[0,1] + {1,...,m} by the condition that
t € Ii(t) and set I(x) = (i(xl),...,i(xn)}, X = (xl,...,xn). Then it is easily seen that

g(x;f) = (1 - ] y.)( max a, - min a,)
jerx) I b1 I jb1en 3

= ) y.(max a, - min a,)
#1007 séreo I jéreo I

Hence for aj =3, jJ=1,...,m we have d, =m - 2 while for the randomized procedure de-

1
fined by

m-1

3 , j=1, m
m -2m+2

Pr I =
(xl : j) m-2
TRl l<ji<m
. m -2m+2

it follows that for all f ¢ F

1
[atxpipaux) = 5" —1(ey ) + Aoyl @-2)
0 m =2m+2
m=1 2
+ B2 (ey,)(me1) » 2L 0 oy o na2
2 j
j=2 m " =2m+2 m -2m+2

Thus rl < dl'

All our results have in effect compared dn, tn' sn for a fixed n. It would be useful

to determine under conditions (5) and (6) whether these quantities can be asymptotically
d

different, in other words when is Iim ;ﬂ < ®,
n

-ll-
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The ideas we have presented have wider applicability. In the next section we will

comment on the optimal estimation of operators from sampling in the presense of noise.

4. Extensions.

In applications it is frequently unrealistic to assume that the data f(xl) ,...,f(xn)
is known exactly. Function values are usually only inaccurately determined as a result of
either experimental or computational error. We measure these errors with a norm [|+|| on
R" and say that f(x;) =y, +e, where llell <1 (normalized), e = (e,,...,e ). In this

case our uncertainty in U is the set
(Vv e F, olx,) = £(x;) + e, [e]l <1}
and the corresponding g is

ge(x;f) = sup Uy - inf Uy
kHe(x;f) wﬂe(xsf)

where

B = (wve P owix) = £(x) + e, lell <1} .

Continuing with this analogy we introduce d:, r:, s:, as in Section 1, and it is easily
seen that all the results of Section 2 remain valid for inaccurate data.

Our discussion in Section 2 and 3 also lends itself to the estimation of operators be-
tween linear spaces. Thus in this case U is an arbitrary mapping from a linear space X
into another linear space Z. Our class F is now some subset K of X and the inforration
about f which may be used to estimate Uf is denoted by If. Earlier If was a sample of
function 'values (f(xl) ....,f(xn)). Now we allow I to be any linear mapping from X
into R%, 1f = (Ilf.....Inf). Ii:x + R i.e. n linear observations of f. As before we will

measure the error in the observation If with a norm "-” on R" and thus the set of

v

uncertainty is
QUE:D) = (UpIv=1f + e, |le]l <1, ve F} .

In this case, Q is not an interval but rather a (quite arbitrary) subset of 2. Therefore
we require some measure of the size Q. For this purpose, we assume that 2 is a normed

linear space and recall that the Chebyshev radius of a set T C 2 is defined as

-12-
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r(T) = inf sup ||x-y| . |
Xc2Z yeT ?
|

The radius of a set serves as an effective measure of its size and we let
g(I;f) = g(Il,...,In;f)

= r(Q(£f;1)) .

This definition differs by a factor of 1/2 from the one we used earlier in (1) when 2Z = R.

An attractive feature of this way of measuring the size of Q is that it corresponds

to the best way to "fill in" the diagram

z

U
- !
4 |

I

< &— X

with a mapping A given only that Iy = If + e, Hell <1 and f € K. These ideas are dis-
cussed in [4] (the proofs of Lemma 1 and 2 are based on remarks in [4]).

We quote the following result from [4; p 2].
Theorem B. If U is a linear operator from X to 2 and K is a convex set centered about

the origin © € X then

g(I; £) < 2g(I;8) .
-

With this result we may proceed, as in Section 2, to show that a sequential search can-
not do better than 1/2 a deterministic one. A sequential search in this context means that
some set L of linear functionals on X is prescribed (in section 2 this was the set of
point evgluations). Then a sequential method based on n observations from L is deter-

= I.. The function

mined by a function h = (hl""'hn)' hi:x x X...X Y+ L where hlll 1

i-1

selects the information

h(I)f = (Ilf, hz(f, Ilf),...,hn(f, Ilf"°"1n-1f))
- (Ilf' sz,...,lnf)

and a sequential search can guarantee an error of

s, = sn(L) = inf sup g(h(I)f;f)
h f¢F

] e




S S ———————

B

while a deterministic approach yields

dn = dn(L) = inf sup g(Il,...,In;f) .

IieL feF

Theorem 3. Let the hypothesis of Theorem B be satisfied. Then

N

d <s

<d 5
n S

n n

Proof. The right hand inequality is obvious. To prove the remaining inequality we let h

* * * *
be any sequential procedure. For € > 0, there exists I = (Il..--.In), Ij € L such that

* *
inf g(Il,...,In;O) + € > g(Il....,In;e)
Iieb

(6 = center of K) .
Thus from Theorem B

sup g(h(If);f)
fek

* *
> G(h(I18):6) > (I eevee 10) = €

(1 £ v
sup g vt ol - €
feF = )

N

>

N

> d. =€ s
b n

Hence, letting ¢ -+ 0" we see that any sequential procedure cannot achieve an accuracy less

than % dn. This proves the theorem.

When K is a unit ball given by a Hilbert space semi-norm and the data I is known
exactly then (when no further assumptions on Y, Z) the factor 2 in Theorem B can be removed
{5; p. 10]. For inaccurate data a similar result holds when Y can 2 are Hilbert spaces

{4). 1In each of these cases dn L

It is interesting to note that when the set L is chosen to be the set of all contin-
uous linear functionals then dn corresponds to the Gel'fand n-width of the set

UK = {uf:feK}, since

~14-




dn = inf g(Il,...,In;G)

IieY

= inf r(Q(Il....,In:e))

IicY

= inf, sup ”Uf”
IieY feK
Iif-o

= inf, sup IlfH
I.eY feUK

i
Iif.O

the Gel'fand n-width of UK, [6].

When K = {x:||x|| < 1} is a Hilbert space unit ball and U is a bounded linear operator

the Gel'fand numbers of UK are known. In particular, if U is a compact operator and

*
U Uy, =29, (¢5,ﬁ‘) =6

b] i ik

AL > A

1 24

.-> > .
202> An 0

2 3

Then the Gel'fand n-width equals A;{f and (¢i, x),....(vh. x) is a best choice of ele-

*
ments in X .
Corollary 2. Let U be a compact linear operator from a Hilbert space X into another
Hilbert space 2. Then an optimal sequential procedure for estimating Ux given "x” <1

and n linear observations of x has error A:/z

+1 and uses the deterministic choice

(wl' x),---.(wn. X) .

=15~

b —tal ST — NS —




5. Micchelli, C. A. and T. J. Rivlin, A survey of optimal recovery, in Optimal Estimation
in Approximation Theory, eds. C. A. Micchelli, T. J. Rivlin, Plenum Press, N.Y., 1977.
6. Singer, I., Best Approximation in Normed Linear Spaces, Springer-Verlag, New York, 1970.
.
|
{
>
[
SG/CAM/jvs »
-16-

REFERENCES

Bakhvalov, N. S., On the optimality of linear methods for operator approximation in con-
vex classes of functions, USSR Computational Mathematics and Mathematical Physics, 11,
(1971) , 244-249.

Fan, Ky, Minimax theorems, Proc. Nat. Acad. Sc. Vol. 39 (1953) 42-47.

Kiefer, J., Optimum sequential search and approximation methods under minimum regularity
assumptions, J. Soc. Appl. Math., 5 (1957), 105-136.

Melkman, A. A. and Charles A. Micchelli, Optimal estimation of linear operators in Hilbert

spaces, to appear SIAM J. Numer. Anal.




e e 7 e I IS

23 e it AR 1

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

[T, REPORT NUMBER 2. GOVT ACCESSION NO,
1871 -

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
OPTIMAL SEQUENTIAL AND NON-SEQUENTIAL PROCEDURES

S. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific
reporting period

FOR EVALUATING A FUNCTIONAL

6. PERFORMING ORG. REPORT NUMBER

7- AUTHOR(s)

Shmuel Gal and Charles A. Micchelli

®. PERFORMING ORGANIZATION NAME AND ADDRESS /
Mathematics Research Center, University of

610 Walnut Street
Madison, Wisconsin 53706

Wisconsin Hspline Functions and Approxi-

S R e
10. p:ganu ELEMENT, PROJECT, TASK
A A & WORK UNIT NUMBERS

Work Unit Number 6 -

mation Theory

®. CONTRACT OR GRANT NUMBER(s) |

DAAG29-75-C-0024 —1

11. CONTROLLING OFFICE NAME AND ADDRESS

U. S. Army Research Office
P.O. Box 12211

12. REPOART DATE

August 197
13. NUMBER OF ®AGES
16

Research Triangle Park, North Carolina 27709
. MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Office)

18. SECURITY CLASS. (of thie report)

UNCLASSIFIED

e o;E ASSIFICATION/ DOWNGRADING
N&WL!

76. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, il dilferent irom Report)

18. SUPPLEMENTARY NOTES

estimation procedure, optimal recovery.

19. KEY WORDS (Continue on reverse side il y and I by dlock ber)
Optimal estimation, sequential estimation, deterministic estimation, random

20. ABSTRACT (Continue on reverse side If y and by block ber)

than nrocedures in which all the observations are

In this paper we identify a class of estimation problems in which
sequential estimation procedures do not vield a better rate of convergence

preassigned in advance.

DD ':g:"” 1473 eoiTion oF 1 NOV 68 13 OBsSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

iy,




